Show simple item record

dc.contributor.authorDhavala, Sai Sirishaen_US
dc.date.accessioned2014-09-17T17:29:41Z
dc.date.available2014-09-17T17:29:41Z
dc.date.issued2014-09-17
dc.date.submittedJanuary 2013en_US
dc.identifier.otherDISS-12226en_US
dc.identifier.urihttp://hdl.handle.net/10106/24735
dc.description.abstractMicrofabrication and microfluidic devices have been recognized as potential platforms for cell-based and drug screening studies. Human glioblastoma multiforme (hGBM) cells migrate inside the central nervous system (CNS) in narrow space constrictions and rarely metastasize through bloodstream. Hence, microfluidic devices consisting of narrow channels are considered as suitable models to study cell migration in vitro. Further the migratory capability of each individual cell could be easily obtained and quantified using such system. This effort presents the design and development of an alternative microfluidic system that provides an integrated array of channels for screening multiple drugs simultaneously. This system is an altered version of traditional system, where a single unit is replaced with multiple units to achieve high-throughput multi-screening platform. The device is tailored to screen various types and doses of drugs simultaneously thus increasing its efficiency. This design has the advantage of using multiple types of drugs of varying concentrations to simultaneously study their effectiveness to inhibit cancer cell migration. Using this platform the migration characteristics of cancer cells in response to various anti-cancer drugs is investigated as part of this research effort. Also, the therapeutic potential of anti-cancer drugs were evaluated quantitatively, in comparison with standard cancer migration (scratch wound) assay.en_US
dc.description.sponsorshipKim, Young-Taeen_US
dc.language.isoenen_US
dc.publisherBiomedical Engineeringen_US
dc.titleDesign, Fabrication And Evaluation Of A Novel Microfluidic Based In Vitro Cell Migration Assayen_US
dc.typeM.S.en_US
dc.contributor.committeeChairKim, Young-Taeen_US
dc.degree.departmentBiomedical Engineeringen_US
dc.degree.disciplineBiomedical Engineeringen_US
dc.degree.grantorUniversity of Texas at Arlingtonen_US
dc.degree.levelmastersen_US
dc.degree.nameM.S.en_US


Files in this item

Thumbnail


This item appears in the following Collection(s)

Show simple item record